

MEASUREMENT = reading of the information through a special equipment to determine the status of the system
classic case: the measure is deterministic and does not alter the state of the bit

State of bit before the measurement	result of measurement	State of bit after the measurement
0	0	0
1	1	1

Probabilistic and destructive Quantum measurement		
State of bit before the measurement	result of measurement	State of bit after the measurement
$\|Q\rangle=a\|0\rangle+b\|1\rangle$	0 with probability $p_{0}=\|a\|^{2}$ 1 with probability $p_{1}=\|b\|^{2}$	$\|0\rangle$

Note: it explain the condition $|a|^{2}+|b|^{2}=1$; the sum of probability must be 1 -

COMPOUND SYSTEM

2 bit: 4 alternatives

bit 1/bit2	0	1
0	00	01
1	10	11

2 qubit: 4 states corresponding to the classic one + superposition principle

$$
\begin{gathered}
\text { 2 qubit } \\
\left|Q_{1} Q_{2}\right\rangle=a|00\rangle+b|01\rangle+c|10\rangle+d|11\rangle
\end{gathered}
$$

With a, b, c, d complex number and $|a|^{2}+|b|^{2}+|c|^{2}+|d|^{2}=1$

$$
\begin{gathered}
\text { 2 qubit logic gate } \\
\left|Q_{1} Q_{2}\right\rangle=a|00\rangle+b|01\rangle+c|10\rangle+d|11\rangle \\
G \mid \\
\left|Q_{1}^{\prime} Q_{2}^{\prime}\right\rangle=a^{\prime}|00\rangle+b^{\prime}|01\rangle+c^{\prime}|10\rangle+d^{\prime}|11\rangle
\end{gathered}
$$

With $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$ linear combination of a, b, c, d

$\mathrm{Q}_{1} \mathrm{Q}_{2}$	$\mathrm{Q}^{\prime}{ }_{1} \mathrm{Q}^{\prime}{ }_{2}$
00	00
01	01
10	11
11	10

Measurement

a measure on the qubit Q_{1} allows us to determine if the first qubit is in $|0\rangle$ or $|1\rangle$ (similarly for Q_{2}), this measure is probabilistic and destructive

Examples. $\quad\left|Q_{1} Q_{2}\right\rangle=a|00\rangle+b|01\rangle+c|10\rangle+d|11\rangle$

$a=b=1 / \sqrt{2}, c=d=0-$ produced state

State of bit before the measurement	State of bit after the measurement	result of measurement on Q_{1}	result of measurement on Q_{2}	$Q_{1}=Q_{2}$
$\left\|Q_{1} Q_{2}\right\rangle=a\|00\rangle+b\|01\rangle$	$\|00\rangle$ with probability $\|a\|^{2}=1 / 2$	0	0	1

$a=d=1 / \sqrt{2}, b=c=0$ - entangled state
no correlation between Q_{1} and Q_{2}

State of bit before the measurement	State of bit after the measurement	result of measurement on Q_{1}	result of measurement on Q_{2}	$Q_{1}=Q_{2}$
$\left\|Q_{1} Q_{2}\right\rangle=a\|00\rangle+d\|11\rangle$	$\|00\rangle$ with probability $\|a\|^{2}=1 / 2$ $\|11\rangle$ with probability $\|b\|^{2}=1 / 2$	0	YES	

perfect correlation between

$$
Q_{1} \text { and } Q_{2}
$$

When it happens, the two qubit are entangled

$$
\begin{gathered}
\text { Bell States } \\
\text { (maximally entangled) } \\
\left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \\
\left|\Phi^{-}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle) \\
\left|\Psi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle) \\
\left|\Psi^{-}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)
\end{gathered}
$$

How to create entangled states

Exercise: what is the exit states if $\left|Q_{1} Q_{2}\right\rangle=|01\rangle,|10\rangle,|11\rangle$?

