

MEASUREMENT = reading of the information through a special equipment to determine the status of the system

<u>classic case</u>: the measure is deterministic and does not alter the state of the bit

State of bit before the measurement	result of measurement	State of bit after the measurement
0	0	0
1	1	1

Probabilistic and destructive Quantum measurement			
State of bit before the measurement	result of measurement	State of bit after the measurement	
$ Q\rangle = a 0\rangle + b 1\rangle$	0 with probability $p_0 = a ^2$ 1 with probability $p_1 = b ^2$	0> 1>	

Note: it explain the condition $|a|^2 + |b|^2 = 1$; the sum of probability must be 1-

COMPOUND SYSTEM

2 bit: 4 alternatives

bit 1/bit2	0	1
0	00	01
1	10	11

2 qubit: 4 states corresponding to the classic one + superposition principle

2 qubit $|Q_1Q_2\rangle = a|00\rangle + b|01\rangle + c|10\rangle + d|11\rangle$ With *a*, *b*, *c*, *d* complex number and $|a|^2 + |b|^2 + |c|^2 + |d|^2 = 1$ logic gates

Q ₁ Q ₂	Q'1Q'2
00	00
01	01
10	<mark>1</mark> 1
1 1	10

Measurement

a measure on the qubit Q_1 allows us to determine if the first qubit is in $|0\rangle$ or $|1\rangle$ (similarly for Q_2), this measure is probabilistic and destructive

Examples. $|Q_1Q_2\rangle = a|00\rangle + b|01\rangle + c|10\rangle + d|11\rangle$

 $a=b={}^1\!/_{\!\sqrt{2}}$, c=d=0 – produced state

State of bit before the measurement	State of bit after the measurement	result of measurement on Q_1	result of measurement on Q_2	$Q_1 = Q_2$
$ Q_1Q_2\rangle = a 00\rangle + b 01\rangle$	$ 00\rangle$ with probability $ a ^2 = 1/2$ $ 01\rangle$ with probability $ b ^2 = 1/2$	0 0	0 1	YES

no correlation between Q_1 and Q_2

 $a = d = \frac{1}{\sqrt{2}}$, b = c = 0 – entangled state

$ Q_1Q_2\rangle = a 00\rangle + d 11\rangle 00\rangle \text{ with probability } a ^2 = 1/2 \qquad 0 \qquad YES$ $ 11\rangle \text{ with probability } b ^2 = 1/2 \qquad \checkmark 1 \qquad \checkmark 1$	State of bit before the measurement	State of bit after the measurement	result of measurement on Q_1	result of measurement on Q_2	$Q_1 = Q_2$
	$ Q_1Q_2\rangle = a 00\rangle + d 11\rangle$	$ 00\rangle$ with probability $ a ^2 = 1/2$ $ 11\rangle$ with probability $ b ^2 = 1/2$	0	0 1	YES

Both the measurement on Q_1 and Q_2 is unpredictable

perfect correlation between Q_1 and Q_2

When it happens, the two qubit are entangled

Bell States (maximally entangled)

$$\begin{split} |\Phi^+\rangle &= \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle \right) \\ |\Phi^-\rangle &= \frac{1}{\sqrt{2}} \left(|00\rangle - |11\rangle \right) \\ |\Psi^+\rangle &= \frac{1}{\sqrt{2}} \left(|01\rangle + |10\rangle \right) \\ |\Psi^-\rangle &= \frac{1}{\sqrt{2}} \left(|01\rangle - |10\rangle \right) \end{split}$$

How to create entangled states

Exercise: what is the exit states if $|Q_1Q_2\rangle = |01\rangle$, $|10\rangle$, $|11\rangle$?